
  

 

Abstract— In an attempt to better understand how the 

navigation part of the brain works, and to possibly create 

smarter and more reliable navigation systems, many papers 

have been written in the field of bio-mimetic systems. This 

paper presents a literature survey of state of the art research 

performed since the year 2000 on rodent neuro-biological and -

physiological based navigation systems that incorporate models 

of spatial awareness and navigation brain cells. The main focus 

is to explore the functionality of the cognitive maps developed 

in these mobile robot systems with respect to route planning, as 

well as a discussion/analysis of the computational complexity 

required to scale these systems.    

1 INTRODUCTION 

This paper reviews the current state of research in mobile 
robot navigation systems that are based on the rodent’s 
specialized spatial awareness and navigation brain cells. 
Specifically, these cells include: place cells, grid cells, border 
cells and head direction cells. The advantages of using a 
neurobiological based system includes the possible 
performance rewards that may be realized in the future 
pertaining to navigation and smart systems, as well as the 
benefits of using accurate models of the brain for other, 
related research [1, 2]. For artificial intelligence to take a 
major leap forward, machines will at minimum need to learn 
and think the way humans do. This will require 
computational elements that behave similar to, and are as 
compact as, the neurons, and accompanying dendrites and 
axons found in the human brain. 

Although there is a need for new technical paradigms in 
artificial intelligence, this paper doesn’t propose or present 
new methods, but outlines work that may be a path to such 
answers. The most important attributes of the neurobiology 
based navigation systems covered, are the types of cognitive 
maps produced by these systems and how they are, or can be, 
used for route planning. Thus, the focus of the analysis of the 
reviewed literature will be centered on mapping and route 
planning capabilities of these neurobiological based systems.  

Most papers that have reviewed such systems came 
around or before the year 2000, such as [3-5]. However, since 
2000, much advancement has taken place in the 
miniaturization of electronic packages (Moore’s Law), thus 
increasing the practicality of placing better sensors, 
processors, algorithms, more memory, etc. on mobile robots. 
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In addition, the discovery of the grid cell by the Mosers in 
2005 [6-9] added more insight as to how rodents navigate. 
Therefore, this paper fills the gap on a needed formal review 
of the state of the art neurobiological based navigation 
systems researched and developed from 2000 and on. On the 
non-neurobiological (classical) side of navigation in mobile 
robots, a good source that reviews map-learning and path 
planning strategies can be found in a paper by Meyer and 
Filliat, 2003 [10], as well as many books on the topic (e.g., 
[11]). 

Thus, the outline of this survey proceeds as follows: 
Section II discusses the basics of the simultaneous 
localization and mapping (SLAM) method of navigation, as 
well as some fundamental issues that plague every navigation 
system (neurobiology based or not); Section III gives a brief 
review of the definitions of the neural cells that will be the 
center of focus in this paper; Section IV covers state of the art 
research that has been performed on neurobiological based 
navigation systems (only those that have been realized in 
working, prototype mobile robot systems) with a critique of 
the cognitive maps developed for route planning algorithms 
at the end of each subsection: and Section V presents an 
analysis of the scalability of these systems to incorporate 
more neurobiological based features with respect to the 
adequacy of the computational resources that can fit on a 
mobile robot for neural network processing.   

2 GENERAL ROBOT NAVIGATION BACKGROUND 

2.1 Simultaneous Localization and Mapping 

For a mobile robot to be truly autonomous, it needs to be 
able to operate and navigate without human intervention and 
in a non-specially engineered environment. More 
specifically, the following needs to be true: A mobile robot 
must be able to locate itself in an unknown location, of an 
unknown environment by incrementally building a map of its 
environment, while simultaneously locating itself in that 
environment by use of the derived map. This process is 
known as simultaneous localization and mapping (SLAM) 
[12-15]. As described in [15], the fundamental parts of a 
classical SLAM system are: (1) landmark extraction, (2) data 
association, (3) state estimation, (4) state update, and (5) 
landmark update. Of course, to be able to accomplish these 
SLAM steps the system requires hardware, used by the agent 
to interact with the environment and make decisions with 
(i.e., sensors, actuators, processor, etc.), plus any filters 
and/or methods required to adequately perform these 5 tasks 
(e.g., sensor noise suppression, error correction algorithms, 
etc.). SLAM is not unique to just classical systems. It is 
accomplished, in some similar form, by rodents by use of 
their hippocampus [2, 16-18]. The special neurons or brain 
cells which accomplish this will be covered in Section 3.  
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2.2 Fundamental Navigation Issue: Sensor Error 

There are fundamental issues which plague every 
navigation system (neurobiological based or not) [19]. These 
issues, largely path integration related, propagate up into the 
mapping and localization phases, levels L0 to L1 in Fig. 1. In 
a neurobiological or neurophysiological based navigation 
system, this is equivalent to either lesions introduced into 
hippocampus and related areas, lack of allothetic stimuli, or 
other similar targeted manipulations on rats [9, 20, 21]. The 
outcome, thus, has a negative effect on the accuracy of the 
overall navigation system. 

Therefore, for any navigation system to work adequately, 
the mobile robot’s sensor data error must be within a usable 
margin and be reset periodically by allothetic information, 
whether visual, tactile, olfactory or other. Idiothetic data is 
the most basic navigational data for the robot to use to track 
its movements and is the basis for path integration [22-24]. 
The inherent issue with any ground based robot navigation 
system is the mobile robot’s measurement accuracy with 
respect to distance traveled and directionality (idiothetic 
data), since this data is used to derive the robot’s or rodent’s 
pose. Sources of classical and most neurobiological based 
navigation systems’ measurement errors come from the data 
obtained from odometry devices, inertial measurement units 
(IMUs), distance sensors, and other position/pose 
measurement systems (use of idiothetic stimuli only). The 
source of these errors fall into two categories, as described in 
[24, 25], of being either systematic or nonsystematic. 
Additionally, these errors accumulate over time [15, 22, 24-
26], making environment localization and mapping 
inaccurate if these measurements are used directly. Methods 
in error correction of odometry and related position/pose data 
has been, and still is, a major topic of research. However, 
probabilistic filters (e.g., extended Kalman filter - EKF) or 
particle filters, as well as use of allothetic stimuli (e.g., 
landmarks), are used with SLAM algorithms in classical 
systems to help correct these errors in the pose data and 
location estimation.  

 

Fig. 1: A generic SLAM based hierarchal architecture that can apply to 
both classical and neurobiological based mobile robot systems.  

 

Similarly, whether animals, insects or animats, these 
navigation systems require path integration (PI) systems with 

corrective error mechanisms [6, 20, 27]. In the case of 
animats, or more specifically, the neurobiological based 
navigation systems reviewed in this paper, it is shown that 
visual data is key to keeping PI errors to a workable 
minimum. This will also be touched on in Section 5. 

3 NAVIGATION RELATED CELLS REVIEW 

The following is a review of the definitions and 
characteristics of the specialized navigation neurons or cells, 
as found in the hippocampus and entorhinal cortex of a 
rodent brain, as well as the human brain [28]. This material is 
covered in other literature [6, 17, 18, 29, 30], but is included 
here for completeness. 

3.1 Place Cells 

Place cells in rodents were discovered by O’Keefe and 

Dostrovsky in 1971 [31, 32]. These cells, primarily located 

in the CA1-CA3 regions of the hippocampus, each fire at a 

devoted location in of a rodent’s roaming area. The place 

cell’s firing location is invariant to the head direction or 

body pose of the rodent. The firing area of each place cell 

also seems to follow the summation of two or more 

Gaussian distribution curves, one for each salient distal cue 

[28].   

3.2 Head Direction Cells 

Head direction cells were discovered in rodents more 

than a decade after the place cells [33, 34]. These cells are 

place invariant and each have a preferred direction with 

respect to the rat’s head direction in the horizontal plane, 

where it will fire at a maximum rate. They are silent for all 

other directions, except for a small region (+/- a few 

degrees) of their preferred direction angle. The head 

direction cells only fire as a function of the rat’s head 

direction and not its body. Additionally, although the cells 

have different preferred directions, they seem to fall into a 

finite set of directions (e.g., N, NE, and SW). The 

directionality is relative, such that they will align relative to 

a dominate external cue of the environment the rat is 

introduced to, if available, else it will set a direction based 

on other unknown origins [20, 35]. 

3.3 Border Cells 

A border cell can be thought of as a specialized place 

cell, where it only fires with respect to a certain border or 

barrier [36, 37]. The area covered by a border cell can vary 

drastically, with respect to each other. Similar to the place 

cell, the firing characteristic of the border cell is invariant to 

the rat’s head direction. 

3.4 Grid Cells 

The grid cell was discovered by Edvard and May-Britt 

Moser in 2005 [6-9]. This set of special, navigation related 

brain cells, which is the most recent to be discovered, is 

located in the entorhinal cortex. Grid cells have a very 

interesting firing characteristic, as compared to the places 

and border cells. A single place cell and border cell only fire 

at a specific location/region, whereas a single grid cell fires 

at a geometrical constellation of locations/regions. These 

regions within the rodent’s roaming area form 



  

hexagonal/equilateral triangles. Thus, once a rodent has 

learned any spot in the locations that are covered by a single 

grid cell, it will fire every time it passes over the same 

learned spots of this grid (within some non-symmetrical 

region of this location). 

4 STATE OF ART RESEARCH IN NEUROBIOLOGICAL BASED 

NAVIGATION SYSTEMS FOR MOBILE ROBOTS 

This section covers state of the art research in 

neurobiological based navigation systems, where the 

systems have been implemented in a mobile robot since the 

early 2000’s. These systems fall into three categories, based 

on the centric navigation cell that is being functionally 

emulated. These categories are: place cell centric, theoretical 

cell centric and grid cell centric. The theoretical cell uses 

one or more true neural navigation cells (one being the place 

cell typically) to create a new, fictional cell that is at the 

center of its navigation systems. Although fictional, these 

cells, or functions, may indeed be plausible and real in one 

form or another. Basic features and capabilities of these 

systems are summarized in Table I, located at the end of the 

paper. 

4.1 Place Cell Centric Systems 

4.1.1  Arleo & Gerstner ’00a 

The article and study by Arleo and Gerstner, 2000a [38] 

has had an influence, in one form or another, on many future 

works covered in this section, particularly [2, 39]. The 

references used in [38] fall into the categories of both 

neuroscience: O’Keefe & Nadel, 1978 [40]; Taube et al., 

1990 [33]; Redish, 1997 [4]; etc.; and in neurobiological 

inspired circuits and models: Burgess et al., 1994 [21]; 

Brown & Sharp, 1995 [41]; Redish & Touretzky, 1997 [42], 

Gaussier et al, 1997 [43]; etc., which form a basis of 

references used by the other proceeding studies/articles. 

More references can be found in Arleo & Gerstner, 2000a  

[38] & 2000b [44]. Additionally, this paper’s presentation 

and functional use of neurobiological specialized spatial 

navigation cells found in the rodent’s hippocampus, for 

modeling in robotic navigation, is central to the theme of all 

of these papers covered. 

4.1.1.1 Head Direction and Place Cells for Spatial 

Navigation 

In [38], the Khepera robot system used consists of: an 

on-board camera for vision based self-localization (90° field 

of view in horizontal plane), eight infrared (IR) sensors for 

obstacle detection and light detection, a light-detector for 

measuring ambient light, and an odometer for sensing self-

motion signals. The neurobiological based navigation system 

models two crucial spatial navigation cells: head direction 

cells and place cells.  

In Fig. 2, the allothetic inputs consist of data from the on-

board camera, which is used for the place cells in the sEC 

submodule, as well as data from the eight IR sensors and the 

ambient light sensor, which are used by the visual bearing 

cells in the VIS submodule (left side of Fig. 2). The neural 

networks (Sanger’s [45]) to the place cell from the camera 

input, are programmed off-line during an initial 

unsupervised, Hebbian learning phase [46]. During this 

initial, exploration/neural network training phase, each place 

cell location is learned by dividing images taken into smaller 

32 x 32 pixels, running the reduced image through 10 

different visual filters of 5 set scales each. This is done for 

the North, West, South and East views of the robot’s arena 

from each snapshot/place cell location. The weights for the 

neural networks of each cell are trained with the reduced 

images and adjusted for maximum response for each image 

location. Thus the place cells are programmed neural 

networks with the on-board camera image, divided into four 

quadrants of 32 x 32 pixels each, at the input, and will allow 

for self-localization in the online mode. 

 

Fig. 2: A functional overview of the directional system [38].  

A light source is added to one wall of the robot’s arena, 

where the IR sensors and ambient light sensor can lock onto 

this global direction (with the help of neural networks for 

fine tune positioning to the light source). This allows for 

calibration of the robot’s directional module (right side of 

Fig. 2), which bounds the accumulated error in 

directionality.  

The robot uses three different neural populations of cells 

(right side of Fig. 2) to calculate its head direction from its: 

current angular velocity, anticipated angular velocity, and 

feedback from the system output and calibration cells. The 

end result is a set of quantized, directional cells to drive the 

robot’s motors for proper heading. 

4.1.1.2 Computational Complexity 

The computational complexity of this system is a bit 

more involved than briefly covered here. Further details can 

be found in [38, 44, 47]. However, any neural network 

system is going to have a relatively high to extremely high 

computational complexity, based on the number of neural 

networks and the processing status of off-line and on-

line/real-time learning. The environment is somewhat 

engineered and needs to be static. This is true though of any 

system in the initial stages of wringing out system 

integration errors, model problems/accuracy, etc. 

4.1.1.3  Mapping and Route Planning 

Visual based mapping, through the use of snapshot 

recognition (place cells), is used to help correct head 



  

direction error and not for obstacle avoidance or route 

planning. Therefore, true mapping and any form of route 

planning are not addressed in [38] and [44]. 

4.1.2  Hafner ‘08 

4.1.2.1 Place Cells and Cognitive Maps 

In [48], Hafner uses place cells for creating a cognitive 

map of a mobile robot’s area. The mobile robot, outfitted 

with only an omnidirectional camera and a compass, 

produces a cognitive map during an exploration phase, 

where the map is represented by place fields and place cells. 

Each snapshot taken by the camera is converted into a 16-

dimensional transformation, which is used as the sensory 

input to a neural network system. That is, each 360° camera 

snapshot is divided up into 16 angular, azimuth sections of 

22.5° each, filtered and sent to the place cells’ neural 

networks. The weights of each neural network, initially set 

to random values, take on evolved values during the 

exploration phase. The place cells, as shown in the “output 

layer/map layer” in Fig. 3, become relationally connected to 

each other based on a self-organizing map (SOM) 

methodology [49], where each, single winner of a particular 

snapshot becomes connected to the previous winner and the 

corresponding connection weight is increased. Since the 

place cells are not geometrically fixed, they are assigned 

relative angles to each other, creating a topological map. 

4.1.2.2 Simulated Route Planning 

However, once the neural cognitive maps have been 

built, they can only be used in simulation for navigation. The 

topological and metric information requires too much 

memory to reside in the mobile robot. Thus the mobile robot 

relies on landmark (snapshot) recognition and use of the 

SOM to reach goal spots or areas. 

 

 

Fig. 3: Neural network structure as a result of learning connectivity 

between place cells. The input layer represents input from the robot’s 

sensors [48]. 

4.1.3  Barrera and Weitzenfeld ‘08 

4.1.3.1 System Overview 

Barrera and Weitzenfeld [2, 50] propose and implement a 

very complex, intricate and modular neurophysiological 

based navigation model. As with Arleo [38, 44], all of the 

proposed functionalities are mapped back to existing 

neurophysiological entities.  Additionally, many of these 

modules are implemented using Gaussian distributions and 

the Hebbian learning rule/equation for neural networks. The 

main goals of this research are: (1) for the mobile robot to be 

able to learn and unlearn path selections for goal locations 

based on changing rewards, (2) to create a realistic 

neuroscience based test bed for use in further behavior 

studies, and (3) add to the existing gap in the SLAM model 

between mapping and map exploitation [2]. The mobile 

robot’s test environment configurations are limited to the T-

maze and the 8-arm radial maze. 

The neurophysiological theory that forms the basis for 

this study comes from [51]. Thus, in addition to idiothetic 

and allothetic sensory inputs, there are also internal 

state/incentives and affordances information sensory inputs. 

Fig. 4 shows the functional modules of this system, while 

removing much of the underlying details of the 

neurophysiological framework. Further details, such as 

model description, the neurophysiological framework, and 

equations for each of these modules can be found in [2, 52-

54].  

 

 

Fig. 4: Computational spatial cognitive model of the Barrera and 
Weitzenfeld neurophysiological based mobile robot navitation system. 

Some submodules and neurophysilogical framework are not shown 

and can be found in [50]. Partial glossary: ř = effective reinforcement; 
PC = place information pattern; EX = expectations of maximu reward 

on their corresponding directions (DX); DIR = next rat direction; ROT 

= rat rotation; and DIS = next rat moving displacement. 

 

 

Fig. 5: World graph layer module which implements a topological 

map of the mobile robot’s environment inside the Place 
Representation module.  



  

Since the system lacks odometry and compass sensors, 

the idiothetic data comes in the form of kinesthetic data that 

is sent to an external motor control module, via the Action 

Selection module as shown in Fig. 4, which is used for 

executing rotations and translations of the robot.  

4.1.3.2 Place Cells, Cognitive Map Generation 

The Place Representation module in Fig. 4 is where the 

cognitive map is made, stored and accessed for the mobile 

robot to select movement options. Thus, this module 

represents the functionality of the hippocampus. The path 

integration information is combined with landmark 

information, through the Hebbian learning rule, to create a 

place cell layer. The overlapping place cell fields in this 

layer represents given locations or nodes that are found in 

the world graph layer (WGL), as shown in Fig. 5. 

The WGL uses a simple algorithm to decide its next 

move. It analyzes active nodes connected to the Actor Unit 

and based on the highest weight, the WGL chooses the step 

that will get it closer to its learned goal, or the best move for 

the time if a goal has been changed or not learned yet. 

4.1.3.3 Computational complexity  

Because of the high computational complexity of this 

neurophysiological based navigation system, most of the 

model runs on an external 1.8 GHz Pentium 4 PC, which 

communicates wirelessly with a Sony AIBO ERS-210 4-

legged robot. Thus, the system is not autonomous.  

4.2 Theoretical Cell Centric Systems 

4.2.1  Wyeth and Milford: RatSLAM, version 3 

4.2.1.1 System Overview 

Wyeth and Milford focuses in [16, 17] on a 

neurobiological inspired, SLAM based, mapping system for 

a mobile robot navigation system, based on models and 

earlier versions of RatSLAM [40]. Their robot, a Pioneer 2-

DXE base system, performs mock deliveries in a large, 

single floor, office building using simple sensors: motor 

encoders for odometry, sonar and laser range finder for 

collision avoidance and pathway centering, and a panoramic 

camera system for landmark recognition.  This system, 

named RatSLAM, uses the concept of place cells coupled to 

head direction (HD) cells to derive, what they call, pose 

cells.  

4.2.1.2 Pose Cells 

The competitive attractor network (CAN) [4, 40] based 

pose cells are used with local view cells, which are snap 

shots of the panoramic camera along the robot’s journey. 

Thus, Milford and Wyeth, have added a new type of cell: the 

pose cell. The pose cell is similar to the conjunctive grid 

cells, as they report, which is a combination of grid cells and 

head direction cells found in the rodent brain. The pose cells 

work like weighted probabilities that each local view cell is 

in the direction and location of the stored pose (averaged). 

Fig. 6 illustrates the connectivity of the RatSLAM, version 

3, as described here and in [20]. 

4.2.1.3 Cognitive Map 

The mapping algorithm incorporates a loop closure and 

map relaxation techniques to fix and massage path 

integration errors, thus creating more of a topological map 

than a metric map. A loop closure event only occurs when a 

threshold of consecutive local view cells matches the 

camera’s input, thus allowing for a change in the pose data. 

So as to save original pose data, the relaxed map is saved to 

an “Experience Map” (see Fig. 7 for an illustration of the 

Experience Map Space), and the local view cells with 

accompanying pose cell data are stored in a connection 

matrix. Due to the topological nature of the Experience Map, 

transitions between experiences are stored, thus allowing for 

route planning to be possible. 

The benefit that comes from this design is that it is a first 

step into implementing the functionality of some of the 

specialized, navigation and spatial awareness, brain cells in a 

mobile robot. The down side is that it has been shown that 

the competitive attractor network can be easily replaced by a 

filter system [19], which leads to substantial computational 

speedup. Additionally, even with pruning in the Experience 

Map, data storage and processing does appear to grow 

unbounded.  

     

  

Fig. 6: Connectivity diagram of the RatSLAM, version 3. 

 

  

Fig. 7: The RatSLAM system. The left side represents the CAN system 

which forms pose cells from local view cells using a 3-D CAN algorithm. 
The right side represents the Experience Map, which helps disambiguate 

scenes that are similar in a semi-metric form. A further, detailed description 

can be found [20]. Permission to replicate given by Dr. Michael Milford. 



  

4.2.2  Gaussier et al. ‘07 

4.2.2.1 Transition Cell 

Gaussier et al. built a neurobiologically inspired mobile 

robot navigation system in 2007 [55] using a new cell type 

they named the “transition cell”.  Their cell is based on the 

concept of moving from one place cell to the next over a 

defined interval of time. Thus, two place cells are mapped to 

a single transition cell, creating a cell which represents both 

position and direction of movement or spatiotemporal 

transitions, thus a graph like structure.  

4.2.2.2  Computation Complexity 

Multiple neural networks span the system’s architecture, 

as shown in Fig. 8, from the landmark extraction/recognition 

stage to the cognitive map and motor transition stages. The 

many inputs of video, place cells, etc. into a system of neural 

networks, requires many calculations to be carried out 

during each time step. This complexity is similar to Arleo 

[38, 44], and Barrera and Weitzenfeld [2, 50, 54], covered in 

the previous section. To illuminate the amount of processing 

that is required it is stated in [55] that the system uses 3x 

dual core Pentium 4 Processors which run at 3 GHz each. 

Azimuth angles are measured using an on-board compass, 

displacement is obtained from wheel encoders, and the 

visual is obtained from a panoramic camera. 

The navigation process starts at the left most part of Fig. 

8, where a single, potential landmark is selected and 

analyzed at a given time. This occurs up to N times per 

snapshot, where N is a set to a value to help balance the 

algorithm’s efficiency with its robustness. Therefore, as 

expected in any visual extraction/recognition system, a fair 

amount of processing time and power is spent during this 

stage. Additionally, during the initial exploration phase, 

weighted neural network coefficients are calculated for each 

potential landmark (32 x 32 pixels) and azimuth grid value, 

so that these small local views can be learned online. For 

more detail on the calculations performed to arrive at the 

place cells from the landmark-azimuth matrix (PrPh) consult 

[55]. 

 

 

Fig. 8: The system’s neural network based model architecture. 

Processing flow starts at the far left with the input of each camera 

snapshot [55]. 

4.2.2.3 Cognitive Map 

Each place cell (center of Fig. 8) is connected to each 

neuron of the landmark-azimuth matrix, where each 

connection has its own, unique, learned weights for that 

landmark-azimuth-place cell combination, as well as 

temporary scalars for the current, potential landmark view. 

However, it is very likely that several place cells will be 

active enough at a given location. The paper states that when 

a whole area has been mapped, during the initial exploration 

phase, the place cells are divided up into their own areas to 

eliminate these overlaps, see Fig. 9. Thus, creating a 

cognitive map. 

 

 

Fig. 9: Assignment of dedicated place cell fields. Permission to 
replicate given by Dr. Nicolas Cuperlier [55]. 

 

 

Fig. 10: Topographical cognitive map in the form of a graph is 
produced in the system, as illustrated. Permission to replicate given by 

Dr. Nicolas Cuperlier [55]. 

An assumption is made about the average number of 

possible place cell transitions from any particular place cell 

for the test conducted in [55]. This is done to reduce the N x 

N neural network based, transition matrix to a 6 x N, where 

N represents the number of possible transition place cell 

targets. Thus, greatly reducing the computational complexity 

from O(N2) to O(N). However, this value may not work for 

all test cases, or in field use.  

4.2.2.4 Route Planning 

The robot’s cognitive map built during an initial 

exploration phase, as previously described, consists of nodes 

and edges, as show in Fig. 10, and is thus a graph: G = (N, 

E). Each node is a transition cell and an edge signifies that 

the robot has traveled between the two transition cells or 

nodes. The edges hold weight value (e.g., function of use) 

and the nodes hold activity values. The recorded 



  

nodes/edges of the cognitive map are used in a neural 

network version of the Bellman-Ford algorithm [56] to find 

the most direct route from a motivation point to the single 

source destination, while several types of motivations (drink, 

eat, sleep, etc.) are used to initiate the robot’s travel to the 

proper destination source. The satisfaction level of the 

motivations changes with time and distance traveled, while 

increasing at the source. 

4.3 Grid Cell Centric Systems 

Perhaps due to the fact that the grid cell was not 

discovered until 2005, or due to its complex nature and 

unknown functionality/contribution to navigation, there is a 

sparse number of robot navigation systems that are based on 

the grid cell. Instead related research in grid cells come from 

computational/oscillational models [57-59].   

As covered in the previous section, Milford and Wyeth 

[16, 17] use pose cells in their neurobiological based 

navigation model, which are similar conjunctive grid cells 

(as further described in [60]). Additionally, the wrapping 

connectivity of the pose cell grid creates a grid cell type 

pattern. However, the pose cell grid is laid out and used 

more like a discretized three dimensional graph rather than 

the known lay out of a grid cell’s firing pattern. There 

certainly are similarities, but this work will remain in the 

theoretic cell section. 

Additionally, Gaussier et al. [61, 62] used a grid cell 

mathematical model of the grid cell for their mobile robot 

navigation system. However, the grid cell is a modulo 

projection of the path integration input. The tests performed 

on the mobile robot shows poor patterns for the grid cell 

firing when relying on just path integration with growing 

accumulated errors as expected. Adding visual input to reset 

and recalibrate the path integration fixes the noisy path 

integration input, and thus sharpening the firing pattern of 

the grid cells. The grid cells are thus used more as a test 

pattern for various arenas and path integration degradation 

used. The grid cells do not add Cartesian mapping to the 

environment as might be expected, if it were used for 

mapping and route planning. Thus, this study does not fully 

fit this section and will not be covered in any more detail.   

5  LITERATURE SURVEY ANALYSIS 

As stated previously, the main focus of this paper is to 

present research on state of the art mobile robot navigations 

systems that are based on true rodent neurobiological spatial 

awareness and navigation brain cells. More specifically, this 

paper critiques how closely these navigation systems 

emulate neurobiological entities (e.g., posterior parietal 

cortex, dorsolateral medial entorhinal cortex, hippocampus, 

basal ganglia, place cells, head direction cells, etc.), the 

systems’ autonomy classification, as well as their cognitive 

mapping and route planning capabilities. A summary of the 

answer to these questions can be found in Table I, as well as 

critiques at the end of each source surveyed. For 

completeness, a brief summary on the importance of visual 

cues to these systems, as well as a discussion on the Hebbian 

learning rule used in the literature and the computational 

limitations of the scalability of these types of navigation 

systems due to the use of neural networks are covered.  

5.1 Visual Cues 

As discussed in Section 2 and exemplified in the 

literature summarized above, it is quite apparent that there is 

a strong correlation between the visual recognition 

capabilities and the overall navigation capabilities of the 

neurobiological based mobile robot. Navigation dominant on 

visual cues is referred to taxon navigation, and applies to 

animals, humans, insects, etc., as well as classical and 

neurobiological based mobile robot navigation systems. This 

comes as no surprise as it has been shown that the 

specialized navigation and spatial awareness cells of a 

rodent are dependent to some degree on visual cues [20, 63-

66]. Additionally, biological systems, such as those found in 

rodents, can navigate on non-visuals cues as well. These can 

be auditory, olfactory, and/or somatosensory cues. However, 

adding more allothetic sources to the neurobiological based 

navigation system and keeping to theme of using artificial 

neural networks (ANN), further taxes the on-board 

processing and memory systems, as discussed below. 

5.2 Neural Networks 

5.2.1  Continuous Attractor Network 

To keep on track with closely modelling a neurobiological 

system, both allothetic and idiothetic stimuli are fed into 

ANNs in all of the literature. The one difference is with the 

RatSLAM system [16, 17, 67, 68], which uses a variant of 

an ANN system called the (3-D) continuous attractor 

network (CAN) system (see Fig. 7). Although the CAN is a 

type of ANN, it is less computationally complex to update 

due to the fact that the activity values of the CAN units are 

varied between 0 and 1, thus keeping the weighted 

connections fixed. Changes in the CAN cell’s activity level 

ΔP is given in [17] by: 

ΔP = P * ε – φ,           (1) 

or, 

ΔPx’, y’, θ’ = ∑i ∑j ∑k Pi,j,k εa,b,c – φ       (2) 

where P represents the activity matrix of the network (Px’, y’, 

θ’), ε is the connection matrix, * is the convolution operator, 

and the constant φ is used to create global inhibition and 

inhibition in the connection matrix. The matrices are fixed in 

size at the start of the robot’s program. 

Another difference between the RatSLAM system and 

the rest of the systems presented in the literature review 

section, is that the other systems use ANNs throughout their 

navigational system (thus increasing the computational 

complexity, but staying with the theme), while RatSLAM 

only uses the CAN for mobile robot pose determination. The 

visual snapshot matching appears to be of a non-ANN based 

algorithm. 



  

5.2.2  Hebbian Learning Rule 

Hebbian based ANN used in the research literature has 

the general equation of: 

yi = ∑j wijxj           (3) 

 and     Δwij = αxj yi            (4) 

where, yi is the output from neuron i, xj is the jth input, and 

wij is the weight from xj to yi. The scalar α is known as the 

learning rate and it may change with time. The Hebbian 

learning rule (Δwij) is named after D. Hebb [46] and his 

theory that the connection or synapse between two neurons 

strengthen as a result of a repeated pre- and postsynaptic 

neuron firing relationship. Incorporating a bias or threshold 

term w0, and some transfer function σ results in the Hebbian 

rule, as shown in [69-71], in the form of: 

       yi = σ (∑j wijxj ˗ w0)         (5) 

The transfer function σ is typically a discrete step function: 

                       (6) 

or a smooth “sigmoid” , e.g. 

      σ(t) = (1 + e˗t)˗1,           (7) 

The Hebbian general equation is inherently unstable, 

where all the synapses can either reach their maximum 

allowed value or transition to zero [72-74]. Thus, a simple 

alternative equation to (4), such as that used in [38], [39] and 

[75], is as follows: 

       Δwij = αxj yi(1 ˗ wij)         (8) 

The neural networks used in the literature surveyed 

typically use no more than a single layer and are 

feedforward neural networks, see Fig. 11. These ANNs are 

adequate for simple, discrete input/output combinations, 

such as heading, turn angle, etc. 

5.3 Computational Complexity Limiting Realism 

Scalability 

When determining the computational complexity of a 

neural network, there are three important parameters to 

consider: size, depth and weight of the network. The size is 

the number of neurons, the depth is the length of a longest 

path from an input point to an output neuron, while the sum 

total of the absolute values of the weights represent the 

weight of the network. 

The training of the ANNs that are used for complex 

pattern recognition, such as those found in interfacing 

allothetic stimuli to the navigation system, can really only be 

accomplished off-line. The processing power and time 

required would have too large of an impact on mobile robot 

resources and usability. This is due to the many forward 

propagation and back propagation cycles required to set the 

weights of the ANN to the most optimum values possible 

(given set number of cycle constraints) for each training 

sample in the training phase. The time complexity will be a 

function of network size and particularly depth. An example 

of a simple two input, two output, single layer ANN is given 

in Fig. 11. Further examples can be found in the literature 

surveyed. 

 
Fig. 11: Single layer ANN with two inputs, two outputs and two neurons. 

 

Ways in which to add neurobiological based entities, 

such as allothetic stimuli, other percepts and/or controlling 

influences (e.g., nucleus accumbens, grid cells, etc) from 

various parts of the brain, while maintaining a usable mobile 

robot footprint, are as follows: 

 

1) Use of mobile graphics processor units for massively 

parallel, general purpose computing (GPGPU) of 

more complex ANNs, 

2) Removing ANNs from simpler parts of the system that 

can be easily replaced by a good, cheap sensor (e.g., 

head direction ANN in [38] with a MEMs gyroscope). 

3) Creating an application specific integrated circuit 

(ASIC) that models ANNs. 

 

Option 3 would be the most expensive, but also the most 

efficient in power, size and processing capabilities. Option 1 

is a more flexible option, but still requires a great deal of 

power and special programming expertise. An example of 

what is available is the NVIDIA’s® Tegra® K1 Mobile GPU 

with 192 light weight parallel processor cores. They can be 

programmed using CUDA or cuDNN. Option 2 takes the 

system away from the realism of a neurobiological system, 

but some tradeoffs need to be made to model portions that 

are most important to the research. 

sgn(t) =                        
0 if t < 0, 
1 if t ≥ 0,            



  

Table I: Neurobiological Based Navigation Research  
Authors/Articles Platform/Sensors Visual Capabilities Brain Cells  

Emulated 

Cognitive Map Route Planning and 

Autonomy (*) 

Arleo; Gerstner [38] 1) Khepera mobile robot 

platform. 

2) 8 IR sensors – 
Obstacle detection. 

3) Light detector –  

Ambient light measure. 
4) Camera 90° H – Self-

localization. 

5) Odometer – Self-motion 

- Offline, unsupervised, Hebbian 

learning, network (NN) training. 

- Four 90° horizontal snapshots 
taken (N, W, S, E) to create a  

single, location recognizable view. 

- Used primarily to assist with  
robot NN directionality.   

- Place cells and 

- Head direction 

(HD) cells 

Built into NNs of  

place cells &  

head direction 
cells. (Use of external 

homing light 

and offline NNs). 

Not applicable. 

Hafner [48] 1) Omnidirectional camera 
2) Compass. 

- 360° snapshot divided into 16  
segments. Input into place cell  

NN, thus assists with robot’s  

position determination. 

-Place cells. Topological map- 
Relational nav. 

connections between 

place cells.  

Can only be per- 
formed in simulations 

due to amount of  

metric data processing 
required. 

Barrera & 

Weitzenfeld [2, 50] 

1) Sony AIBO, 4 legged  

robot. 
2) Camera 50° H 

3) Limited turns in  

increments of +/- 45°. 
4) External PC w/ 1.8 GHz  

Pentium 4 Processor. Runs 

nav. model and connects. 
wirelessly to AIBO robot. 

- Simple color recognition  

representing landmarks and goal. 
- Distance extracted from images  

of engineered environment and 

known relations. 

-Places cells & 

many neuro- 
physiological 

based elements. 

Place cells (nodes)  

and connections 
(edges). 

Simple T-maze and 

8-arm maze. 

Ability to learn and 

unlearn goal locations. 
 

Wyeth & Milford 

[16, 17] 

1) Pioneer 2-DXE robot. 

2) Motor encoders –  
Odometry 

3) Sonar & laser range 

finder – Collision avoidance 
& pathway centering. 

4) Panoramic camera syst.  

– Landmark recognition. 

- 360° snapshot. Each unique 

snapshot is stored as a local view 
cell (VC) for landmark recognition. 

- Place cell & 

head direction 
cell combined 

as a pose cell. 

 

A cognitive map is  

stored in an  
experience map. The 

map is created from 

the pose cells in the 
competitive attractor 

network (CAN). 

Office delivery  

locations are stored 
in the mobile robot,  

which uses the exp. 

map and CAN to  
make deliveries. 

*Autonomous. 

Gaussier et al. [55] 1) Robot with 3x Dual Core 
Pentium Processors (3 GHz 

each). 

2) Panoramic camera. 
3) Compass to measure  

azimuth angles. 

4) Wheel encoders. 
 

- 360° snapshot taken at low 
resolution and image is convolved 

using difference of Gaussian  

(DoG) to detect characteristic  
points (Landmark recognition). 

- Place cells 
coupled together 

to create  

transition cells. 

Topological map. 
Created online during 

initial exploration 

phase: images and 
directions used to 

create place cells 

which are then used 
to create trans. cells.  

Use of the Bellman- 
Ford algorithm to 

choose most direct 

route from the cogn. 
map (transition cells 

with weighted links). 

*Autonomous. 

Strösslin [39] 1) Khepera mobil robot 

platform. 
2) Camera 60° H FOV. 

3) Odometers. 

4) Proximity sensors. 

- Simulates rodent’s FOV by  

rotating camera 4 times to obtain 
240° FOV image. 

- Extracts directional information  

from visual inputs. 
- Path integration through visual 

and self-motion information.  

- Place cells and 

- HD cells 
- Many neuro- 

physiological 

based elements.  

Combined place 

code (CPC) neurons, 
where visual and  

odometric information 

is stored. 

Results come partially 

from the robot and 
from simulation of 

agent. Thus, not  

applicable. 
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